Search results for "Crop and Pasture Production"

showing 4 items of 4 documents

Unravelling the modus operandi of phytosiderophores during zinc uptake in rice: the importance of geochemical gradients and accurate stability consta…

2020

Abstract Micronutrient deficiencies threaten global food production. Attempts to biofortify crops rely on a clear understanding of micronutrient uptake processes. Zinc deficiency in rice is a serious problem. One of the pathways proposed for the transfer of zinc from soils into rice plants involves deoxymugineic acid (DMA), a phytosiderophore. The idea that phytosiderophores play a wider role in nutrition of Poaceae beyond iron is well established. However, key mechanistic details of the DMA-assisted zinc uptake pathway in rice remain uncertain. In particular, questions surround the form in which zinc from DMA is taken up [i.e. as free aqueous Zn(II) or as Zn(II)–DMA complexes] and the role…

PhysiologyIronmedia_common.quotation_subjectPlant Biology & Botany0607 Plant Biology0703 Crop and Pasture Productionchemistry.chemical_elementPlant ScienceZincrice (Oryza sativa)010501 environmental sciencesDeoxymugineic acid01 natural sciencesgeochemical gradientsSoilZinc deficiency (plant disorder)phytosiderophore0105 earth and related environmental sciencesmedia_commonRhizosphere0604 GeneticsChemistryLigandzinc uptakeBiological TransportOryza04 agricultural and veterinary sciencesMicronutrientmicroenvironmentstability constantsZincSpeciationIonic strengthEnvironmental chemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesZinc uptakerhizosphere
researchProduct

Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease.

2016

Background Huanglongbing (HLB) disease is still the greatest threat to citriculture worldwide. Although there is not any resistance source in the Citrus germplasm, a certain level of moderated tolerance is present. A large-scale analysis of proteomic responses of Citrus may help: 1) clarifying physiological and molecular effects of disease progression, 2) validating previous data at transcriptomic level, and 3) identifying biomarkers for development of early diagnostics, short-term therapeutics and long-term genetic resistance. Results In this work we have conducted a proteomic analysis of mature leaves of two Citrus genotypes with well-known differing tolerances to HLB: Navel orange (highl…

Crop and Pasture Production0106 biological sciences0301 basic medicineProteomicsCitrusCandidatus LiberibacterProteomePlant Biology & BotanyCandidatus liberibacterPlant BiologyHuanglongbingPlant ScienceBiologyProteomicsMicrobiology01 natural sciencesTranscriptome03 medical and health sciencesCitrus Huanglongbing Candidatus liberibacter iTRAQ Proteome ProteomicRhizobiaceaeDetoxificationSettore AGR/07 - Genetica AgrariaGenotypePlant DiseasesGeneticsbusiness.industryProteomicbiology.organism_classificationCitrus; Huanglongbing; Candidatus liberibacter; iTRAQ; Proteome; ProteomicBiotechnologyMetabolic pathway030104 developmental biologyiTRAQProteomebusinessCitrus × sinensisMetabolic Networks and Pathways010606 plant biology & botanyCitrus sinensisResearch ArticleBMC plant biology
researchProduct

Reviewing research priorities in weed ecology, evolution and management: a horizon scan.

2018

Weedy plants pose a major threat to food security, biodiversity, ecosystem services and consequently to human health and wellbeing. However, many currently used weed management approaches are increasingly unsustainable. To address this knowledge and practice gap, in June 2014, 35 weed and invasion ecologists, weed scientists, evolutionary biologists and social scientists convened a workshop to explore current and future perspectives and approaches in weed ecology and management. A horizon scanning exercise ranked a list of 124 pre-submitted questions to identify a priority list of 30 questions. These questions are discussed under seven themed headings that represent areas for renewed and em…

0106 biological sciencesagroecologyCrop and Pasture ProductionLife on LandEcology (disciplines)Molecular Plant PhysiologyPlant Scienceweed adaptation01 natural sciencesEcosystem servicesEcogenomicsTransdisciplinarityPolitical scienceinvasive plantsAgroecologyReview PapersEcology Evolution Behavior and Systematics2. Zero hungerReview PaperFood securityEcologybusiness.industrytransdisciplinary researchAgronomy & Agriculture04 agricultural and veterinary sciences15. Life on land13. Climate actionAgricultureintegrated weed managementEcological Applications040103 agronomy & agriculture0401 agriculture forestry and fisheriesWeedbusinessAgronomy and Crop ScienceDisciplineOT Team Schimmels Onkr. en Plagen010606 plant biology & botany
researchProduct

Gene regulation in parthenocarpic tomato fruit.

2009

Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlatio…

0106 biological sciencesPhysiologyParthenogenesisPlant Biologyseedless fruitPlant SciencetomatoParthenocarpy01 natural sciencesSolanum lycopersicumGene Expression Regulation PlantGene expressionArabidopsis thalianaHormone metabolismPlant Proteins2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyfood and beveragesRipeningPlantsPlants Genetically ModifiedResearch PapersBiochemistryMetabolomeBiotechnologyCrop and Pasture ProductionINOPlant Biology & Botanyfruit ripeningGenetically Modified03 medical and health sciencesparthenocarpicAuxinBotanyGeneticsGenetically modified tomatoLycopersicon esculentum030304 developmental biologyNutritionfruit quality fruit ripening INO parthenocarpic seedless fruit tomato.Arabidopsis Proteinsfungifruit qualityPlantbiology.organism_classificationSeedless fruitchemistryGene Expression RegulationFruit010606 plant biology & botanyTranscription Factors
researchProduct